Cyclic coordinate descent: A robotics algorithm for protein loop closure
نویسندگان
چکیده
منابع مشابه
Cyclic coordinate descent: A robotics algorithm for protein loop closure.
In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance constraints with respect to dihedral angle degrees of freedom. These algor...
متن کاملWhen Cyclic Coordinate Descent Outperforms Randomized Coordinate Descent
Coordinate descent (CD) method is a classical optimization algorithm that has seen a revival of interest because of its competitive performance in machine learning applications. A number of recent papers provided convergence rate estimates for their deterministic (cyclic) and randomized variants that differ in the selection of update coordinates. These estimates suggest randomized coordinate de...
متن کاملAnalyzing Random Permutations for Cyclic Coordinate Descent
We consider coordinate descent methods on convex quadratic problems, in which exact line searches are performed at each iteration. (This algorithm is identical to Gauss-Seidel on the equivalent symmetric positive definite linear system.) We describe a class of convex quadratic problems for which the random-permutations version of cyclic coordinate descent (RPCD) outperforms the standard cyclic ...
متن کاملCoordinate descent algorithm for covariance graphical lasso
Bien and Tibshirani (2011) have proposed a covariance graphical lasso method that applies a lasso penalty on the elements of the covariance matrix. This method is definitely useful because it not only produces sparse and positive definite estimates of the covariance matrix but also discovers marginal independence structures by generating exact zeros in the estimated covariance matrix. However, ...
متن کاملBlock-Cyclic Stochastic Coordinate Descent for Deep Neural Networks
We present a stochastic first-order optimization algorithm, named BCSC, that adds a cyclic constraint to stochastic block-coordinate descent. It uses different subsets of the data to update different subsets of the parameters, thus limiting the detrimental effect of outliers in the training set. Empirical tests in benchmark datasets show that our algorithm outperforms state-of-the-art optimizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Protein Science
سال: 2003
ISSN: 0961-8368,1469-896X
DOI: 10.1110/ps.0242703